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Quantum Computation of Fuzzy Numbers
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Received

We study the possibility of performing fuzzy set operations on a quantum computer.
After giving a brief overview of the necessary quantum computational and fuzzy set the-
oretical concepts we demonstrate how to encode the membership function of a digitized
fuzzy number in the state space of a quantum register by using a suitable superposition
of tensor product states that form a computational basis. We show that a standard quan-
tum adder is capable to perform Kaufmann’s addition of fuzzy numbers in the course
of only one run by acting at once on all states in the superposition, which leads to a
considerable gain in the number of required operations with respect to performing such
addition on a classical computer.
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1. INTRODUCTION

After the discovery of Shor’s factorization algorithm for quantum computers
(e.g., Ekert and Jozsa, 1996; Shor, 1994) many scientists searched for other quan-
tum algorithms which would allow to perform calculations on a quantum computer
more quickly than on a classical digital computer. This paper studies the possibility
of performing fuzzy set operations on a quantum computer. The idea originated
from the observation that fuzzy set theory and quantum theory are related in the
sense that quantum probabilities of experimental outcomes show a fuzzy character
(Pykacz, 1998). This quantum fuzziness was demonstrated by showing that one
can represent any quantum logic with an ordering set of states by a suitably chosen
family of fuzzy sets using Giles (L� ukasiewicz) fuzzy set connectives to represent
meet and join operations (Pykacz, 1987, 1994, 2000a,b). In this paper we will show
that one can perform Kaufmann’s addition of fuzzy numbers (Kaufmann, 1975)
on a quantum computer in a much more efficient way with respect to performing
such addition on a classical computer.
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In Section 2 we recall the main concepts and ideas of quantum computation
treated as a physical process and give examples of quantum gates used to con-
struct a quantum adder. Section 3 is devoted to the standard fuzzy arithmetics and
Kaufmann’s addition of fuzzy numbers and shows how this is done on a classi-
cal computer. In the next section we show how to encode membership functions
of fuzzy sets in the form of suitable superposition states of a quantum register
in a number of steps that is linear in the size of the input. We also demonstrate
that Kaufmann’s addition of fuzzy sets may be performed by a standard quantum
adder already described in the literature. The famous quantum parallelism allows
to perform all calculations involved in computing the Kaufmann’s sum of two
digitized fuzzy numbers in the course of only one step reducing considerably the
number of operations to be performed. Although in principle one has to perform
many measurements on the output state of the quantum register in order to ob-
tain the membership function of the result, in some cases the demand of a finite
precision of the result allows to obtain a considerable computational gain. It is
an open question whether other fuzzy set operations can be calculated efficiently
on a quantum computer and whether more sophisticated methods for obtaining
(useful characteristics of) the output membership function can be developed in the
future.

2. WHAT IS A QUANTUM COMPUTER?

2.1. Computation is a Physical Process

Computation can be described mathematically using the concept of an abstract
Turing machine, but actual computation is always performed by some real physical
system. The input is encoded by a suitably chosen initial state of a computer’s
register, after which a processor induces changes of the state of the register till
the final state of the register is obtained and the algorithm stops. An output of
the computational process is obtained by decoding the final state of the register.
Using this view one can compare computational abilities of classical and quantum
computers that follow from their very physical nature.

Classical computers are characterized by a register that is a set of bistable
classical physical systems (switches, wires, magnets, etc.) able to store binary units
(bits) of information: “0” or “1.” The processor forces a transition of the initial state
of the register to the final state according to the laws of classical physics. Of course,
in order to understand really the working of modern classical computers one has
to use quantum description for semiconductors used in the computer, but still the
states of the register used to store information are classical. Therefore, a classical
l-bit register can be in only one of its possible 2l states at a time and a classical
processor forces its transition to another such state, which is described mathemat-
ically as the action of Boolean functions on bit strings. Quantum computers on
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the other hand have a register which is a set of bistable quantum physical systems
(two-level atoms, spin-1/2 particles, photons in orthogonal polarization states, etc.)
able to store quantum binary units (qubits) of information. The state of each qubit
is represented by a vector in a two-dimensional complex Hilbert space:

|q〉 = c0|0〉 + c1|1〉, c0, c1 ∈ C, |c0|2 + |c1|2 = 1 (1)

in which |q〉 represents neither a statistical mixture of “falsity” and “truth” nor
some intermediate truth value between “0” and “1”. The processor forces transi-
tion of the initial state of the register to the final state according to the laws of
quantum mechanics, which is described mathematically as the action of unitary
transformations on the qubit strings representing the state of the quantum register.
As such, a quantum l-qubit register can be not only in any of the 2l “classical”
states: |0〉 = |00 . . . 0〉, |1〉 = |00 . . . 1〉, . . . , |2l − 1〉 = |11 . . . 1〉, but also in any
superposition state |s〉:

|s〉 =
2l−1∑
i = 0

ci |i〉, c0, . . . c2l−1 ∈ C,
2l−1∑
i = 0

|ci |2 = 1, (2)

and a quantum processor in a single run performs a unitary transformation si-
multaneously on each qubit string that is in this superposition, thus acting as a
huge family of parallel processors, which is the essence of the famous “quantum
parallelism.”

2.2. Virtues and Drawbacks of Quantum Computers

First of all, it has been shown that quantum computers are universal, i.e.,
quantum computers, in principle, can do everything that classical computers can do
(and, hopefully, much more . . .). Also, quantum parallelism can enormously speed
up computations, e.g., Shor’s factorization algorithm implemented on a quantum
computer should allow to factorize 100-digit numbers in several seconds, whereas
the most powerful of existing classical computers could not accomplish this task
in a time shorter than the lifetime of the Universe from the Big Bang till the present
moment, because the best algorithms for classical computers for the factorization
problem are exponential with respect to the size of the input.

On the other hand, quantum computing also has its drawbacks: In most cases
there is no direct access to the final state of the register because any measure-
ment of this state selects from the superposition state randomly only one specific
value i ∈ {0, . . . , 2l − 1} with probability |ci |2. Therefore, special techniques have
to be developed in order to get useful information out of the quantum register.
Moreover, the actual building of quantum computers poses great technological
problems caused by decoherence due to interaction with the environment. These
problems are unavoidable when dealing with ultrasensitive single quantum objects,
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Fig. 1. Graphical representation of the controlled-NOT gate.

and although error correction techniques have been put forward, whether useful
quantum computers can ever be actually built still remains an open question.

2.3. Elementary Quantum Logic Gates

Let us recall some examples of the most fundamental elementary quantum
gates (see, e.g., Vedral et al., 1996; Vedral and Plenio, 1998). The first is the
controlled-NOT gate which acts on two qubits and negates the second bit iff the
first one is “1”. This gate induces, therefore, a unitary state transformation given
by:

Cnot : |00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

This gate is usually represented by Fig. 1, in which the upper qubit is the control
bit.

A modified version of this gate acts on three qubits negating the third one
iff the first and the second are “1”. It is called the Toffoli gate or the controlled–
controlled-NOT gate (Fig. 2).

2.4. The Full Quantum Adder

Using these elementary quantum gates one can build a 1-bit quantum adder
(Fig. 3).

By arranging a number of 1-bit quantum adders in a cascade (cf. Vedral et al.,
1996), one obtains the full quantum adder whose action can be represented by the
unitary operation U :

|i〉 ⊗ | j〉 ⊗ |0〉 U−→ |i〉 ⊗ | j〉 ⊗ |i + j〉.

Fig. 2. Graphical representation of the Toffoli gate.
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Fig. 3. The 1-bit quantum adder.

Let us note that the input is preserved in the output, which makes these operations
reversible, as required by the quantum theory.

3. THE STANDARD FUZZY ARITHMETICS

3.1. Fuzzy Numbers

A fuzzy number is a convex and normalized fuzzy subset x̃ of the real line,
i.e., such fuzzy subset of R that the convexity condition:

∀u,v∈R ∀λ∈[0,1] x̃(λu + (1 − λ)v) ≥ min(x̃(u), x̃(v)) (3)

and the (fuzzy) normalization condition hold:

∃!x ∈ R such that x̃(x) = 1. (4)

Let us note that this normalization condition is not a very stringent one because
any membership function that attains its maximum can be (fuzzy) normalized by
dividing it by its maximal value.

The standard way of defining arithmetic operations on fuzzy numbers utilizes
the sup-min extension principle. For example, addition of two fuzzy numbers is
usually defined as follows:

(x̃ + ỹ)(z) = sup
u+v=z

min(x̃(u), ỹ(v)). (5)

The sup-min operations on fuzzy numbers, although the most popular, are
not the only one considered in the literature (see, e.g., Dubois and Prade, 1980).
Another way of adding fuzzy numbers was considered by Kaufmann in his book
(Kaufmann, 1975) already in 1975. He used a probabilistic method of extending
addition to fuzzy numbers by means of an ordinary convolution:

(x̃ + ỹ)(z) =
∫ z

0
x̃(u)ỹ(z − u)du (6)
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3.2. Addition of Fuzzy Numbers on a Classical Computer

The most general way in which operations on fuzzy sets can be emulated on
a conventional digital computer consists in digitizing all membership functions of
the input and performing the required operations pointwisely in order to get the
digitized membership function of the output.

In such case we deal with numbers of the form: ã = {ã(0), ã(1), . . . , ã(n)},
where we admit that some of the values ã(i) may equal zero. In this case Kaufmann’s
addition (6) takes the discrete form:

(ã + b̃)(k) =
∑

i + j = k

ã(i)b̃( j). (7)

It can be easily checked that the total number of arithmetic operations that a
conventional digital computer has to perform in order to obtain the membership
function of the sum of two fuzzy numbers whose supports consist of n points is of
the order n2.

4. QUANTUM FUZZY ARITHMETICS

4.1. Encoding the Input

In this subsection we shall show how to represent digitized fuzzy numbers by
suitable superpositions (2) of states of the register that form its computational basis.

The state |s〉 = ∑2l−1
i = 0 ci |i〉of the formula (2) can be thought of as representing

a digitized fuzzy number s̃ with a support consisting of 2l integers {0, 1, . . . , 2l −
1} and a membership function s̃(i) = |ci |2 for any i ∈ {0, 1, . . . , 2l − 1}. Of course
such membership function is normalized in probabilistic, not fuzzy sense:

∑2l−1
i = 0

|ci |2 = 1, while in general maxi |ci |2 < 1, but, according to our remark about
the fuzzy normalization condition made in subsection 3.1, this should yield no
problems.

Suppose now that we want to represent in this way a specific digitized fuzzy
number with predefined values ã(i) of its membership function. This can be done
by applying the general algorithm described by Zalka (1998). In our case this
algorithm is particularly simple and we shall explain it on the following example.

Example. Let us represent in the form (2) a fuzzy number whose support consists
of four integers: 0, 1, 2, 3, and whose membership function takes values: ã(0) =
0.1, ã(1) = 0.3, ã(2) = 0.5, ã(3) = 0.1. As we see, this membership function is
already normalized probabilistically:

∑3
i = 0 ã(i) = 1. If it was not, one should

normalize it probabilistically dividing it by
∑3

i = 0 ã(i )̇ before applying Zalka’s
algorithm.

The algorithm goes as follows: Since the support of our number consists of
four points, the superposition (2) we aim at should contain four terms and might
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be of the form

±
√

0.1|00〉 ±
√

0.3|01〉 ±
√

0.5|10〉 ±
√

0.1|11〉, (8)

since (±√
0.1)2 = 0.1 = ã(0), etc. In order to get such superposition from the state

|00〉 we divide the membership function of our number into two halves, calculate
the sums of its values in the left half getting 0.4, and in the right half getting
0.6, and apply the rotation by arctan

√
0.6√
0.4

to the first qubit in the tensor product
|00〉 = |0〉 ⊗ |0〉:[( √

0.4
√

0.6

−√
0.6

√
0.4

)
⊗ I

]
(|0〉 ⊗ |0〉) =

√
0.4(|0〉 ⊗ |0〉) −

√
0.6(|1〉 ⊗ |0〉)

(9)
In the next (and, in our case, the last) step we apply to the result of the previous

step unitary transformation |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where U0 is the rotation by
arctan

√
0.3√
0.1

, and U1 is the rotation by arctan
√

0.1√
0.5

:

(|0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1)[
√

0.4(|0〉 ⊗ |0〉) −
√

0.6(|1〉 ⊗ |0〉)]
=

√
0.4(|0〉 ⊗ U0|0〉) −

√
0.6(|1〉 ⊗ U1|0〉). (10)

Taking into account that

U0|0〉 =
√

0.1√
0.4

|0〉 −
√

0.3√
0.4

|1〉 (11)

and

U1|0〉 =
√

0.5√
0.6

|0〉 −
√

0.1√
0.6

|1〉 (12)

we get from (10)

|0〉 ⊗ (
√

0.1|0〉 −
√

0.3|1〉) − |1〉 ⊗ (
√

0.5|0〉 −
√

0.1|1〉)
=

√
0.1|00〉 −

√
0.3|01〉 −

√
0.5|10〉 +

√
0.1|11〉 (13)

which is the desired result. Of course if this step was not the last one, the coefficients
in the rotation matrices should be obtained by calculating, respectively, the sums
of values of the membership function in the “left half” and the “right half” of each
of the “halves” from the previous step, and proceeding with such rotations until
the desired result is obtained. It can be easily checked that if the support of a fuzzy
number to be encoded consists of n = 2l integers, i.e., this number can be encoded
by using qubit strings of the length l, the required number of additions necessary to
calculate rotation coefficients equals 2l − 2 = n − 2. Let us note that this number
is linear with respect to n while the total number of arithmetic operations performed
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by a classical digital computer in order to calculate Kaufmann’s sum of two fuzzy
numbers whose support consists of n points is quadratic with respect to n.

4.2. Action of the Quantum Processor

Suppose now that we have to add two fuzzy numbers ã = ã(i) and b̃ = b̃( j)
that are represented by |a〉 = ∑

iϕ(i)|i〉, |b〉 = ∑
jψ( j)| j〉, where |ϕ(i)|2 = ã(i)

and |ψ( j)|2 = b̃( j). We feed the following input to the adder

|a〉 ⊗ |b〉 ⊗ |0〉 =
∑

i, j

ϕ(i)ψ( j)|i〉 ⊗ | j〉 ⊗ |0〉. (14)

The quantum adder acts on the states of the computational basis as follows:
|i〉 ⊗ | j〉 ⊗ |0〉 U−→ |i〉 ⊗ | j〉 ⊗ |i + j〉. By substituting this in (14) and rearrang-
ing the sum with respect to the last factor of the tensor product we obtain:∑

i, j

ϕ(i)ψ( j)|i〉 ⊗ | j〉 ⊗ |i + j〉 =
∑

k

∑
i + j = k

ϕ(i)ψ( j)|i〉 ⊗ | j〉 ⊗ |k〉. (15)

The probabilities of getting the particular values of the result are obtained by
representing the state (15) as a projector in the tensor product space H ⊗ H ⊗ H
and taking the partial trace over the two first spaces in the tensor product:∑

k,k ′

∑
i + j = k

∑
i ′ + j ′ = k ′

δi i ′δ j j ′ϕ(i)ϕ(i)ψ( j)ψ( j)|i〉〈i ′| ⊗ | j〉〈 j ′| ⊗ |k〉〈k ′|, (16)

which yields the following vector:∑
k

∑
i + j = k

|ϕ(i)|2|ψ( j)|2|k〉. (17)

The formula (17) interpreted directly in terms of values of the membership
function shows that the addition of two digitized fuzzy numbers realized by the
standard quantum adder is exactly Kaufmann’s addition (7).

4.3. Getting the Output

Because we have no direct access to the output state of the quantum register,
if the task is to reconstruct the entire membership function of the result, we would
have to repeat the addition many times, loosing in this way a big part of the gain that
follows from changing the classical adder to the quantum one. However, because
most of computations performed with fuzzy data finishes with some defuzzification
procedure, we may assume that the task is to find the barycenter of the membership
function of the output. The x-coordinate of this barycenter is just the mean value of
the probability distribution of getting particular results of measurements performed
on the quantum register that obtained its final state after consecutive runs of the
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quantum adder. Because the standard error of the mean value obtained in the course
of k runs is proportional to 1/

√
k, we see that if the desired accuracy of obtaining

the “defuzzyfied result” is not too high, the number k may be much smaller than n2,
i.e., the number of arithmetic operations that a classical computer has to perform
in order to get the membership function of the output (which still would have
to be augmented if the final task were to find the barycenter). For example, if the
assumed accuracy of finding the barycenter of the output is 10%, and the support of
two digitized fuzzy numbers to be added consists of n = 100 points, then k � 100,
which is much smaller than the number of operations (n2 = 10.000) that a classical
computer should perform in order to get the same result.

5. CONCLUSIONS

Due to the famous quantum parallelism quantum computers may evaluate,
in the course of a single run, whole membership functions of fuzzy sets instead
of evaluating them “point by point.” This, at least in some specific situations,
would allow to considerably diminish the number of computational steps required
to get the output in comparison to what could be achieved while using classical
computers. For the moment it remains an open question whether also other fuzzy set
operations, e.g., the most frequently used sup-min operations, could be calculated
on a quantum computer more efficiently than on a classical computer, and whether
better techniques can be developed to obtain useful information without having to
measure the whole membership function, in a way that preserves the computational
speedup of the quantum computer.
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